$V = 2379 (2) \text{ Å}^3$

Mo $K\alpha$ radiation $\mu = 1.29 \text{ mm}^-$

 $0.26 \times 0.20 \times 0.14 \text{ mm}$

6100 measured reflections

2098 independent reflections

1823 reflections with $I > 2\sigma(I)$

Z = 4

T = 296 K

 $R_{\rm int} = 0.018$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dichloridobis(4-pyridylmethyl 1H-pyrrole-2-carboxvlate-*kN*)zinc

Can Li,^a Guilong Zhang^b and Zhenming Yin^a*

^aTianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China, and ^bAgro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, People's Republic of China Correspondence e-mail: tjyinzm@yahoo.com.cn

Received 19 December 2011; accepted 11 January 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.069; data-to-parameter ratio = 14.0.

In the title molecule, $[ZnCl_2(C_{11}H_{10}N_2O_2)_2]$, the Zn^{II} ion, situated on a twofold axis, is in a distorted tetrahedral coordination environment formed by two chloride anions and two pyridine N atoms of the two organic ligands. In the pyrrole-2-carboxylate unit, the pyrrole N-H group and the carbonyl group point approximately in the same direction. The dihedral angle between the two pyridine rings is 54.8 $(3)^{\circ}$. The complex molecules are connected into chains extending along [101] by N-H···Cl hydrogen bonds. The chains are further assembled into (101) layers by $C-H \cdots O$ and C- $H \cdot \cdot \cdot Cl$ interactions.

Related literature

For the hydrogen-bonded assemblies of pyrrole-based structures, see: Wang & Yin (2007); Yin & Li (2006); Cui et al. (2009).

Experimental

Crystal data

$[ZnCl_2(C_{11}H_{10}N_2O_2)_2]$	
$M_r = 540.69$	
Monoclinic, $C2/c$	
a = 27.604 (14) Å	
b = 6.205 (3) Å	
c = 16.087 (8) Å	
$\beta = 120.309 \ (6)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1997) $T_{\min} = 0.727, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	150 parameters
$wR(F^2) = 0.069$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$
2098 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Iydrogen-bond	geometry (Å, °)	
---------------	-----------------	--

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D{\cdots}A$	$D - H \cdots$	·A
$N2-H2\cdots Cl1^{i}$ $C3-H3\cdots Cl1^{ii}$ $C4-H4\cdots O1^{iii}$	0.86 0.93 0.93	2.57 2.75 2.54	3.306 (3) 3.495 (3) 3.354 (3)	144 138 146	
Symmetry codes: $-x + \frac{1}{2}, -y + \frac{5}{2}, -z + 1.$	(i) ·	$-x + \frac{1}{2}, -y + \frac{3}{2}, -z + 1;$	(ii)	x, y + 1, z; (i	ii)

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We sincerely thank the Natural Science Foundation of China for financial support (NSFC Nos. 20702038 and 21172174)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2445).

References

Bruker (1997). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cui, Y., Yin, Z., Dong, L. & He, J. (2009). J. Mol. Struct. 938, 322-327.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Wang, W.-Y. & Yin, Z.-M. (2007). Acta Cryst. E63, o2737-o2738.

Yin, Z. & Li, Z. (2006). Tetrahedron Lett. 47, 7875-7879.

supplementary materials

Acta Cryst. (2012). E68, m323 [doi:10.1107/S1600536812001353]

Dichloridobis(4-pyridylmethyl 1*H*-pyrrole-2-carboxylate-κN)zinc

Can Li, Guilong Zhang and Zhenming Yin

Comment

In our earlier works, we have reported the hydrogen-bonded assemblies of 4-pyridylmethyl 1*H*-pyrrole-2-carboxylate (Wang & Yin, 2007) and some other pyrrole-based compounds (Yin & Li, 2006; Cui *et al.* 2009) in the solid state. Combination of coordination bonding and hydrogen bonding is an effective strategy for the generation of supramolecular networks. Continuing our study, herein we report the crystal structure of the complex obtained with 4-pyridylmethyl-1*H*-pyrrole-2-carboxylate and ZnCl₂.

A perspective view of the title compound with atomic labeling is shown in Fig. 1. The complex consists of one $ZnCl_2$ and two ligand molecules, in which both the pyrrole-2-carboxylate moieties adopted *syn* conformation with the carbonyl group arranged in the same direction as the adjacent pyrrole N—H group. In the complex, the dihedral angle between the two pyridine rings is 54.8 (3)°. The complex molecules assemble into layer structrue through N—H…Cl, C—H…O and C —H…Cl hydrogen bonds (Fig. 2).

Experimental

The methanol solution of $ZnCl_2$ (0.1 M, 5 mL) was layered on CHCl₃ solution of 4-pyridylmethyl 1*H*-pyrrole-2-carboxylate (0.1 M, 10 mL) and then evaporated to give colorless crystals of the title compound in about 70% yield.

Refinement

All H atoms were placed in calculated positions (C—H = 0.93 -0.97 Å; N-H = 0.86 Å) and refined as riding on their carrier atoms with $U_{iso}(H) = 1.2 U_{eq}(C, N)$.

Computing details

Data collection: *SMART* (Bruker, 1997); cell refinement: *SMART* (Bruker, 1997); data reduction: *SAINT* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound with displacement ellipsoids shown at the 30% probability level. The atom with the 'A' label were generated by the symmetry operation -x,y,1/2-z.

Figure 2

The layer of the title molecules assembled by intermolecular hydrogen bonds (hydrogen bonds are shown as dashed lines).

Dichloridobis(pyridin-4-ylmethyl 1H-pyrrole-2-carboxylate-ĸN)zinc

Crystal data	
$[ZnCl_2(C_{11}H_{10}N_2O_2)_2]$	$\beta = 120.309 \ (6)^{\circ}$
$M_r = 540.69$	$V = 2379 (2) Å^3$
Monoclinic, $C2/c$	Z = 4
Hall symbol: -C 2yc	F(000) = 1104
a = 27.604 (14) Å	$D_{\rm x} = 1.510 {\rm ~Mg} {\rm ~m}^{-3}$
b = 6.205 (3) Å	Melting point: 438 K
c = 16.087 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2747 reflections $\theta = 2.5-26.8^{\circ}$ $\mu = 1.29 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
phi and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min} = 0.727, \ T_{\max} = 1.000$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.069$	neighbouring sites
S = 1.06	H-atom parameters constrained
2098 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0441P)^2 + 0.3857P]$
150 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.17 \ m e \ m \AA^{-3}$
direct methods	$\Delta ho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 296 K

 $R_{\rm int} = 0.018$

 $k = -7 \rightarrow 5$ $l = -17 \rightarrow 19$

Block, colourless

 $0.26 \times 0.20 \times 0.14 \text{ mm}$

6100 measured reflections 2098 independent reflections 1823 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$ $h = -32 \rightarrow 32$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	<i>U</i> */ <i>U</i>	
	A 0,000	<i>y</i>	0.2500		
Zni	0.0000	0.41/49(4)	0.2300	0.03878 (12)	
C11	0.01743 (2)	0.23365 (8)	0.14847 (3)	0.05019 (15)	
01	0.30330 (6)	1.1722 (3)	0.65205 (11)	0.0654 (4)	
02	0.24547 (5)	0.8880 (2)	0.60656 (9)	0.0495 (3)	
N1	0.06598 (6)	0.6110(2)	0.33725 (10)	0.0395 (3)	
N2	0.37959 (7)	0.9421 (3)	0.81985 (12)	0.0555 (5)	
H2	0.3931	1.0663	0.8187	0.067*	
C1	0.15031 (8)	0.6615 (3)	0.48714 (13)	0.0481 (5)	
H1	0.1754	0.6095	0.5483	0.058*	
C2	0.10377 (8)	0.5440 (3)	0.42633 (14)	0.0470 (5)	
H2A	0.0980	0.4122	0.4475	0.056*	
C3	0.07520 (7)	0.8013 (3)	0.30828 (13)	0.0405 (4)	
Н3	0.0494	0.8502	0.2469	0.049*	
C4	0.12083 (8)	0.9263 (3)	0.36502 (14)	0.0427 (4)	

H4	0.1258	1.0569	0.3420	0.051*	
C5	0.15987 (7)	0.8576 (3)	0.45746 (13)	0.0394 (4)	
C6	0.20924 (8)	0.9974 (3)	0.51816 (14)	0.0501 (5)	
H6A	0.2293	1.0285	0.4844	0.060*	
H6B	0.1968	1.1328	0.5313	0.060*	
C7	0.29241 (8)	0.9944 (4)	0.66858 (13)	0.0444 (4)	
C8	0.32739 (8)	0.8683 (3)	0.75342 (13)	0.0460 (4)	
C9	0.40637 (10)	0.7894 (5)	0.88712 (16)	0.0712 (7)	
H9	0.4427	0.7994	0.9392	0.085*	
C10	0.37168 (12)	0.6193 (5)	0.86637 (18)	0.0767 (8)	
H10	0.3796	0.4930	0.9020	0.092*	
C11	0.32176 (10)	0.6672 (4)	0.78171 (16)	0.0607 (5)	
H11	0.2904	0.5784	0.7504	0.073*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Zn1	0.03178 (17)	0.03411 (18)	0.03693 (18)	0.000	0.00734 (13)	0.000
Cl1	0.0473 (3)	0.0494 (3)	0.0450 (3)	0.0092 (2)	0.0167 (2)	-0.0014 (2)
01	0.0573 (9)	0.0543 (9)	0.0588 (9)	-0.0232 (8)	0.0102 (8)	0.0022 (8)
O2	0.0393 (7)	0.0473 (8)	0.0451 (7)	-0.0124 (6)	0.0089 (6)	0.0012 (6)
N1	0.0343 (8)	0.0366 (8)	0.0373 (8)	-0.0042 (6)	0.0104 (7)	0.0007 (6)
N2	0.0416 (9)	0.0756 (13)	0.0404 (9)	-0.0067 (9)	0.0142 (8)	-0.0053 (8)
C1	0.0428 (10)	0.0460 (11)	0.0378 (10)	-0.0054 (9)	0.0071 (9)	0.0065 (9)
C2	0.0450 (11)	0.0395 (11)	0.0426 (10)	-0.0090 (8)	0.0118 (9)	0.0066 (8)
C3	0.0382 (10)	0.0378 (10)	0.0368 (9)	0.0010 (8)	0.0124 (8)	0.0037 (8)
C4	0.0404 (10)	0.0370 (10)	0.0457 (10)	-0.0039 (8)	0.0181 (9)	0.0047 (8)
C5	0.0341 (9)	0.0381 (9)	0.0416 (10)	-0.0050 (8)	0.0159 (8)	-0.0028 (8)
C6	0.0425 (11)	0.0455 (11)	0.0460 (11)	-0.0106 (9)	0.0103 (9)	0.0023 (9)
C7	0.0357 (10)	0.0500 (11)	0.0417 (10)	-0.0097 (9)	0.0152 (9)	-0.0063 (9)
C8	0.0386 (10)	0.0565 (12)	0.0412 (10)	-0.0040 (9)	0.0190 (9)	-0.0036 (9)
C9	0.0527 (13)	0.112 (2)	0.0409 (12)	0.0165 (15)	0.0176 (11)	0.0113 (13)
C10	0.0786 (18)	0.092 (2)	0.0623 (15)	0.0227 (16)	0.0379 (14)	0.0292 (14)
C11	0.0610 (13)	0.0659 (14)	0.0588 (13)	-0.0012 (12)	0.0328 (12)	0.0075 (11)

Geometric parameters (Å, °)

Zn1—N1	2.0367 (15)	C2—H2A	0.9300
Zn1—N1 ⁱ	2.0367 (15)	C3—C4	1.364 (3)
Zn1—Cl1 ⁱ	2.2347 (9)	С3—Н3	0.9300
Zn1—Cl1	2.2347 (9)	C4—C5	1.392 (3)
O1—C7	1.208 (3)	C4—H4	0.9300
O2—C7	1.344 (2)	C5—C6	1.490 (3)
O2—C6	1.431 (2)	C6—H6A	0.9700
N1—C3	1.340 (2)	С6—Н6В	0.9700
N1—C2	1.344 (2)	C7—C8	1.441 (3)
N2—C9	1.345 (3)	C8—C11	1.364 (3)
N2—C8	1.369 (3)	C9—C10	1.349 (4)
N2—H2	0.8600	С9—Н9	0.9300
C1—C2	1.368 (3)	C10—C11	1.396 (3)

C1 C5	1 380 (3)	C10 H10	0.0300
C1 = H1	0.0300		0.9300
C1—III	0.9300	en-mi	0.9500
$N1$ — $Zn1$ — $N1^{i}$	107 76 (9)	C1 - C5 - C4	117 34 (17)
$N1 - Zn1 - C11^{i}$	104.16(6)	C1 - C5 - C6	123.90(17)
$N1^{i}$ $7n1$ $C11^{i}$	110.92 (6)	C4 - C5 - C6	118 76 (17)
N1 - Zn1 - Cl1	110.92 (6)	$0^{2}-C^{2}-C^{5}$	108.94 (16)
$N1^{i}$ $Zn1$ $C11$	104.16 (6)	$O_2 C_6 H_{6A}$	100.94 (10)
$C_{11i} = Z_{11} = C_{11}$	104.10(0)	$C_2 = C_0 = H_0 A$	109.9
CT = CT	116.01(4) 115.60(15)	C_{3} C_{6} H_{6} H_{6}	109.9
$C_{1} = 02 = 02$	117.51 (15)	$C_2 = C_0 = H_0 B$	109.9
$C_3 = N_1 = C_2$	117.51 (15)		109.9
$C_3 = N_1 = Z_n I$	122.71 (12)	H6A - C6 - H6B	108.3
C2—NI—ZnI	119.71 (12)	01 - 02	122.62 (18)
C9—N2—C8	109.1 (2)	01	125.59 (17)
C9—N2—H2	125.4	O2—C7—C8	111.77 (17)
C8—N2—H2	125.4	C11—C8—N2	107.33 (19)
C2—C1—C5	119.81 (18)	C11—C8—C7	132.68 (19)
C2—C1—H1	120.1	N2—C8—C7	119.74 (18)
C5—C1—H1	120.1	N2C9C10	108.6 (2)
N1-C2-C1	122.78 (17)	N2—C9—H9	125.7
N1—C2—H2A	118.6	С10—С9—Н9	125.7
C1—C2—H2A	118.6	C9-C10-C11	107.6 (2)
N1—C3—C4	122.79 (17)	C9—C10—H10	126.2
N1—C3—H3	118.6	C11—C10—H10	126.2
С4—С3—Н3	118.6	C8—C11—C10	107.3 (2)
C3—C4—C5	119.77 (17)	C8—C11—H11	126.3
C3—C4—H4	120.1	C10-C11-H11	126.3
C_{5} C_{4} H_{4}	120.1		120.5
05 04 114	120.1		
N1 ⁱ —Zn1—N1—C3	-34.15 (12)	C7—O2—C6—C5	179.31 (16)
Cll ⁱ —Zn1—N1—C3	-152.03 (13)	C1—C5—C6—O2	4.0 (3)
C11—Zn1—N1—C3	79.27 (15)	C4—C5—C6—O2	-175.71 (16)
$N1^{i}$ Zn1 $-N1$ $-C2$	149.00 (17)	C6-02-C7-01	1.0 (3)
$Cl1^{i}$ $Zn1$ $N1$ $C2$	31.12 (15)	C6-02-C7-C8	-177.45(16)
C11 - Zn1 - N1 - C2	-97 58 (15)	C9-N2-C8-C11	11(2)
C_{3} N1 C_{2} C1	01(3)	C9 - N2 - C8 - C7	-173.90(18)
7n1 - N1 - C2 - C1	177 12 (16)	01 - C7 - C8 - C11	-178.6(2)
C_{5} C_{1} C_{2} N_{1}	-0.1(3)	$0^{2}-0^{7}-0^{8}-0^{11}$	-0.2(3)
$C_2 = N_1 = C_2 = N_1$	0.1(3)	02 - 07 - 08 - 011	-5.1(3)
$C_2 - N_1 - C_3 - C_4$	0.2(3)	O1 - C7 - C8 - N2	-3.1(3)
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$	-1/0.73(14)	02-07-08-102	1/5.28(1/)
N1 - U3 - U4 - U3	-0.5(3)	$V_{0} = V_{0} = V_{0} = V_{0}$	-1.4(3)
12-11-15-14	-0.2(3)	N2-C9-C10-C11	1.2 (3)
C2-C1-C5-C6	-179.95 (19)	N2-C8-C11-C10	-0.4 (2)
C3—C4—C5—C1	0.5 (3)	C7—C8—C11—C10	173.7 (2)
C3—C4—C5—C6	-179.77(18)	C9—C10—C11—C8	-0.5(3)

Symmetry code: (i) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H··· A	
N2—H2…Cl1 ⁱⁱ	0.86	2.57	3.306 (3)	144	
C3—H3…Cl1 ⁱⁱⁱ	0.93	2.75	3.495 (3)	138	
C4—H4…O1 ^{iv}	0.93	2.54	3.354 (3)	146	

Symmetry codes: (ii) -*x*+1/2, -*y*+3/2, -*z*+1; (iii) *x*, *y*+1, *z*; (iv) -*x*+1/2, -*y*+5/2, -*z*+1.